Table of contents

aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving with Long-Range Perception (arxiv 2022/11)

Summary

Sensor

  • 64-beam top LiDAR
    • 1x LiDAR Spinning, 64 beams, 10Hz capture frequency, 360◦ horizontal FOV, +15◦ to -25◦, vertical FOV, ≤ 200m range, ± 2 cm accuracy, up to 1.15 Million Points per Second
    • Hesai Pandar64
  • 4 cameras
    • 2 (前後)pinhole: 30 to 40 Hz capture frequency, 1/1.55” CMOS sensor of 2896 × 1876 resolution
      • IMX490
    • 2 (左右)fisheye: 30 to 60 Hz capture frequency, 1/2.7” CMOS sensor of 1920 × 1080 resolution
  • 2 long-range radars
    • 77GHz Radar
      • 18 Hz capture frequency, -16° to +16° azimuth FOV, -7.5 to +7.5 elevation FOV, up to 175m distance, velocity accuracy of ±0.1 m/s
      • UMRR11
  • GNSS+INS
    • up to 100 Hz measurement frequency, position accuracy of 100 mm (PPK), heading accuracy of 0.044◦, roll&pitch accuracy of 0.009◦
  • mapは入っていないっぽい

Method

  • Data
    • California(US) , Austria, Hungary
  • LiDAR: VoxelNet
    • radarはLIDARの点としてconcatして扱っている
  • Camera: BEVDepth
  • BEVFusion: multimodal models

Experiment

  • Cameraでorientationを獲得している

  • Radarは全体としては微妙
    • 遠方の検出では少しだけ寄与