summary

  • UberによるPrediction framework REINFORCE の提案
    • Mapや交通ルールから好ましい予測のoutputを出したいが、基本的に微分不可能
    • REINFORCE gradient estimatorを使う
  • minADEだけ使っても意味がないよ

Background

  • 割と重要なことを言ってる

  • この論文はMixture of Gaussian model

Method

  • Prior
    • Reachable Lanes
    • SDV Route
  • Prior-informed loss function

Metrics

    1. Motion Forecasting
    • (i) the final lane error (trajectory waypoint inside vs. outside the reachable lanes at 5 seconds into the future) to measure map understanding
    • (ii) minimum average displacement error (minADE) to show the recall of our motion forecasts at different time horizons
    • (iii) mean average displacement error (meanADE), idea of the precision of our predictions since unrealistic samples severely harm this metric
  • これだけでは足りない
      1. recall is easily achievable at the expense of precision by simply predicting very fan-out(四方八方 に散る) distributions.
      1. precision in the motion forecasts is critical for safe motion planning
    1. Ego-Motion Planning
    • We feed the planner with 50 trajectory samples for each vehicle, as a Monte Carlo approximation of the marginal distribution
    • 乗り心地も評価
      • We focus on the safety-related metric of collision rate (% of time the SDV plan collides with any other traffic participant in the ground-truth, for a future horizon of 5 seconds).
      • lateral acceleration and jerk

Experiment

Discussion

  • 非常に社会実装のことを考えたPrediction評価