For Japanese

Biography

Profile

  • Name: Satoshi Tanaka

Work Experience

  • Apr. 2020 - Now, TIER IV, Inc. Autonomous Driving Sensing/Perception Engineer
  • Internship
    • Apr. 2018 - Apr. 2019, Internship at Preferred Networks, Inc. as a part-time engineer
    • Aug. 2017 - Mar. 2018, Internship at Hitachi, Ltd as a research assistant

Academic Background

  • Master’s Degree in Information Science and Engineering, the University of Tokyo
    • Apr. 2018 - Mar. 2020, Ishikawa Senoo Lab, Department of Creative Informatics, Graduate School of Information Science and Technology
  • Bachelor’s Degree in Precision Engineering, the University of Tokyo
    • Apr. 2017 - Mar. 2018, Kotani Lab, Research Center for Advanced Sceience and Technology
    • Apr. 2016 - Mar. 2018, Dept. of Precison Engineering
    • Apr. 2014 - Mar. 2016, Faculty of Liberal Arts

Interest

  • Robotics, Computer Vision, Control theory
  • High-speed Robotics
    • System integration of high-speed robot using 1000fps high-speed image processing
    • Deformation Control, robot force control for dynamic manipulation with high speediness
    • Application of high-speed visual control for logistics, Unmanned Aerial Vehicle(UAV)
  • Robot vision
    • 3D perception for robotics with sensor fusion
  • Other hobby

Publication

International Conference (First author)

  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, Makoto Shimojo, and Masatoshi Ishikawa: High-speed Hitting Grasping with Magripper, a Highly Backdrivable Gripper using Magnetic Gear and Plastic Deformation Control, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2020), Proceedings, pp. 9137 - 9143. [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]
  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, and Masatoshi Ishikawa: Adaptive Visual Shock Absorber with Visual-based Maxwell Model Using Magnetic Gear, The 2020 International Conference on Robotics and Automation (ICRA2020), Proceedings, pp. 6163-6168.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: Non-Stop Handover of Parcel to Airborne UAV Based on High-Speed Visual Object Tracking, 2019 19th International Conference on Advanced Robotics (ICAR2019), Proceedings, pp. 414-419.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: High-speed UAV Delivery System with Non-Stop Parcel Handover Using High-speed Visual Control, 2019 IEEE Intelligent Transportation Systems Conference (ITSC19), Proceedings, pp. 4449-4455.

International Conference (Not first author)

  • Taisei Fujimoto, Satoshi Tanaka, and Shinpei Kato: LaneFusion: 3D Object Detection with Rasterized Lane Map, the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022), Proceedings, pp. 396-403.

Other publication

  • Kazunari Kawabata, Manato Hirabayashi, David Wong, Satoshi Tanaka, Akihito Ohsato AD perception and applications using automotive HDR cameras, the 4th Autoware workshop at the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022)

Award, Scholarship

Projects

mmCarrot



DepthAnything-ROS



(Research) LaneFusion: 3d detection with HD map

  • Accepted at IV2022

(Research) High-speed Hitting Grasping with Magripper

  • Accepted at IROS2020 [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]

(Research) Adaptive Visual Shock Absorber with Magslider

  • Accepted at ICRA2020

(Research) High-speed supply station for UAV delivery system

  • Accepted at ITSC2019


Robotic Competition

  • Team Leader for ABU Robocon2016
  • Winner of National Championships, 2nd-runnerup of ABU Robocon, ABU Robocon award.
  • Visited to the prime minister’s residence as the team leader of representation from Japan team. Reported by link and link.

Other projects

Latest change (blog, survey)

On-the-fly Category Discovery for LiDAR Semantic Segmentation (ECCV2024)
On-the-fly Category Discovery for LiDAR Semantic Segmentation (ECCV2024) Summary Unknown objectのための LiDAR Semantic Segmentationに必要なカテゴライズの導入 Method Baseは “On-the-fly Category Discovery (CVPR 2023)” https://github.com/PRIS-CV/On-the-fly-Category-Discovery 解きたいタスクの違い (a)
Towards Stable 3D Object Detection (ECCV2024)
Towards Stable 3D Object Detection (ECCV2024) Summary https://github.com/jbwang1997/StabilityIndex from Nankai University + KargoBot Inc. (自動運転企業) 3D detectionにおける時系列の安定性を考慮したMetrics、Stability Index (SI) の提案
UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction (ECCV2024)
UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction (ECCV2024) Summary https://vita-epfl.github.io/UniTraj/ https://github.com/vita-epfl/UniTraj prediction taskを統一的に扱えるフレームワークの提案 巨大なデータでpredictionを学習したら、結局データの大きさが
モニターにunknown monitorが検出されてsuspendからの復帰でモニターの接続が壊れる問題
モニターにunknown monitorが検出されてsuspendからの復帰でモニターの接続が壊れる問題 概要 モニターにunknown monit
Rust製可視化ツールのrerunを使ってmmdetection3dの可視化をしてみる
Rust製可視化ツールのrerunを使ってmmdetection3dの可視化をしてみる 概要 Rust製可視化ツールのrerunを使って、mmd
mmcarrot
Summary Repository: https://github.com/scepter914/mmcarrot Made useful tools for MMlab libraries Made 3D visualization of mmdetection3d with rerun.io 3D visualization Made 3D visualization of mmdetection3d with rerun.io
3D Small Object Detection with Dynamic Spatial Pruning (ECCV2024)
3D Small Object Detection with Dynamic Spatial Pruning (ECCV2024) Summary https://xuxw98.github.io/DSPDet3D/ PruningしながらFPNする機構を備えたsmall object 3D detection real-time object detectionも考慮 https://github.com/xuxw98/DSPDet3D mmdet base https://www.youtube.com/watch?v=Wq-cIRnKhw0 Method Pruning 全体 Experiment Discussion
Find n’ Propagate: Open-Vocabulary 3D Object Detection in Urban Environments (arxiv 2024/03, ECCV2024)
Find n’ Propagate: Open-Vocabulary 3D Object Detection in Urban Environments (arxiv 2024/03, ECCV2024) Summary Open-Vocabulary 3D Object Detection https://github.com/djamahl99/findnpropagate contribute 2D VLM を用いたfrustum base手法 Greedy Box Seeker frustumからsegmentしてspaceをsea
Injecting Planning-Awareness into Prediction and Detection Evaluation (IV2022)
Injecting Planning-Awareness into Prediction and Detection Evaluation (IV2022) Summary https://github.com/BorisIvanovic/PlanningAwareEvaluation Detectionとforecastingに使えるPI-metricsの提案 Method 他の手法 task-aware evaluation metrics be: Able to capture asymmetries in downstream tasks. Method-agnostic. Computationally feasible to compute. Interpretable
Soft Robotics Commercialization: Jamming Grippers from Research to Product (Soft robotics 2016)
Summary ドラえもんハンドのproduct化で大変だったことまとめ集 ソフトロボティクスを事業化しようとするなら必読 動画 https://www.youtube.com/watch?v=GdJyICIp4t4 https://www.youtube.com/watch?v=KZ0Y2fDZ8Uw https://www.youtube.com/watch?v=zgHSAUEzjn4 Background これまでの世界にimp