For Japanese

Biography

Profile

  • Name: Satoshi Tanaka

Work Experience

  • Apr. 2020 - Now, TIER IV, Inc. Autonomous Driving Sensing/Perception Engineer
  • Internship
    • Apr. 2018 - Apr. 2019, Internship at Preferred Networks, Inc. as a part-time engineer
    • Aug. 2017 - Mar. 2018, Internship at Hitachi, Ltd as a research assistant

Academic Background

  • Master’s Degree in Information Science and Engineering, the University of Tokyo
    • Apr. 2018 - Mar. 2020, Ishikawa Senoo Lab, Department of Creative Informatics, Graduate School of Information Science and Technology
  • Bachelor’s Degree in Precision Engineering, the University of Tokyo
    • Apr. 2017 - Mar. 2018, Kotani Lab, Research Center for Advanced Sceience and Technology
    • Apr. 2016 - Mar. 2018, Dept. of Precison Engineering
    • Apr. 2014 - Mar. 2016, Faculty of Liberal Arts

Interest

  • Robotics, Computer Vision, Control theory
  • High-speed Robotics
    • System integration of high-speed robot using 1000fps high-speed image processing
    • Deformation Control, robot force control for dynamic manipulation with high speediness
    • Application of high-speed visual control for logistics, Unmanned Aerial Vehicle(UAV)
  • Robot vision
    • 3D perception for robotics with sensor fusion
  • Other hobby

Publication

International Conference (First author)

  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, Makoto Shimojo, and Masatoshi Ishikawa: High-speed Hitting Grasping with Magripper, a Highly Backdrivable Gripper using Magnetic Gear and Plastic Deformation Control, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2020), Proceedings, pp. 9137 - 9143. [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]
  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, and Masatoshi Ishikawa: Adaptive Visual Shock Absorber with Visual-based Maxwell Model Using Magnetic Gear, The 2020 International Conference on Robotics and Automation (ICRA2020), Proceedings, pp. 6163-6168.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: Non-Stop Handover of Parcel to Airborne UAV Based on High-Speed Visual Object Tracking, 2019 19th International Conference on Advanced Robotics (ICAR2019), Proceedings, pp. 414-419.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: High-speed UAV Delivery System with Non-Stop Parcel Handover Using High-speed Visual Control, 2019 IEEE Intelligent Transportation Systems Conference (ITSC19), Proceedings, pp. 4449-4455.

International Conference (Not first author)

  • Taisei Fujimoto, Satoshi Tanaka, and Shinpei Kato: LaneFusion: 3D Object Detection with Rasterized Lane Map, the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022), Proceedings, pp. 396-403.

Other publication

  • Kazunari Kawabata, Manato Hirabayashi, David Wong, Satoshi Tanaka, Akihito Ohsato AD perception and applications using automotive HDR cameras, the 4th Autoware workshop at the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022)

Award, Scholarship

Projects

mmCarrot



DepthAnything-ROS



(Research) LaneFusion: 3d detection with HD map

  • Accepted at IV2022

(Research) High-speed Hitting Grasping with Magripper

  • Accepted at IROS2020 [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]

(Research) Adaptive Visual Shock Absorber with Magslider

  • Accepted at ICRA2020

(Research) High-speed supply station for UAV delivery system

  • Accepted at ITSC2019


Robotic Competition

  • Team Leader for ABU Robocon2016
  • Winner of National Championships, 2nd-runnerup of ABU Robocon, ABU Robocon award.
  • Visited to the prime minister’s residence as the team leader of representation from Japan team. Reported by link and link.

Other projects

Latest change (blog, survey)

デフォルトパラメータとどう付き合うか
デフォルトパラメータとどう付き合うか 概要 ロボットや機械学習では大量のパラメータを扱うことになる Architect(アーキテクチャを考える人)
CAT-SAM: Conditional Tuning for Few-Shot Adaptation of Segment Anything Model (ECCV2024)
CAT-SAM: Conditional Tuning for Few-Shot Adaptation of Segment Anything Model (ECCV2024) Summary https://xiaoaoran.github.io/projects/CAT-SAM https://github.com/weihao1115/cat-sam “a ConditionAl Tuning network” for SAM SAMに additional pipelineを追加して、元のSAMはfrozenしてadaptationする研究 Method architecture a
Detecting As Labeling: Rethinking LiDAR-camera Fusion in 3D Object Detection (ECCV2024)
Detecting As Labeling: Rethinking LiDAR-camera Fusion in 3D Object Detection (ECCV2024) Summary from Phigent Robotics CTOが Baidu -> Horizon Robotics の経歴 https://github.com/HuangJunJie2017/BEVDet Camera LiDAR 3D detection において、Camera pipelineはlabel推定にしか使わないようにした
On-the-fly Category Discovery for LiDAR Semantic Segmentation (ECCV2024)
On-the-fly Category Discovery for LiDAR Semantic Segmentation (ECCV2024) Summary Unknown objectのための LiDAR Semantic Segmentationに必要なカテゴライズの導入 Method Baseは “On-the-fly Category Discovery (CVPR 2023)” https://github.com/PRIS-CV/On-the-fly-Category-Discovery 解きたいタスクの違い (a)
Towards Stable 3D Object Detection (ECCV2024)
Towards Stable 3D Object Detection (ECCV2024) Summary https://github.com/jbwang1997/StabilityIndex from Nankai University + KargoBot Inc. (自動運転企業) 3D detectionにおける時系列の安定性を考慮したMetrics、Stability Index (SI) の提案
UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction (ECCV2024)
UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction (ECCV2024) Summary https://vita-epfl.github.io/UniTraj/ https://github.com/vita-epfl/UniTraj prediction taskを統一的に扱えるフレームワークの提案 巨大なデータでpredictionを学習したら、結局データの大きさが
モニターにunknown monitorが検出されてsuspendからの復帰でモニターの接続が壊れる問題
モニターにunknown monitorが検出されてsuspendからの復帰でモニターの接続が壊れる問題 概要 モニターにunknown monit
Rust製可視化ツールのrerunを使ってmmdetection3dの可視化をしてみる
Rust製可視化ツールのrerunを使ってmmdetection3dの可視化をしてみる 概要 Rust製可視化ツールのrerunを使って、mmd
mmcarrot
Summary Repository: https://github.com/scepter914/mmcarrot Made useful tools for MMlab libraries Made 3D visualization of mmdetection3d with rerun.io 3D visualization Made 3D visualization of mmdetection3d with rerun.io
3D Small Object Detection with Dynamic Spatial Pruning (ECCV2024)
3D Small Object Detection with Dynamic Spatial Pruning (ECCV2024) Summary https://xuxw98.github.io/DSPDet3D/ PruningしながらFPNする機構を備えたsmall object 3D detection real-time object detectionも考慮 https://github.com/xuxw98/DSPDet3D mmdet base https://www.youtube.com/watch?v=Wq-cIRnKhw0 Method Pruning 全体 Experiment Discussion