For Japanese

Biography

Profile

  • Name: Satoshi Tanaka

Work Experience

  • Apr. 2020 - Now, TIER IV, Inc. Autonomous Driving Sensing/Perception Engineer
  • Internship
    • Apr. 2018 - Apr. 2019, Internship at Preferred Networks, Inc. as a part-time engineer
    • Aug. 2017 - Mar. 2018, Internship at Hitachi, Ltd as a research assistant

Academic Background

  • Master’s Degree in Information Science and Engineering, the University of Tokyo
    • Apr. 2018 - Mar. 2020, Ishikawa Senoo Lab, Department of Creative Informatics, Graduate School of Information Science and Technology
  • Bachelor’s Degree in Precision Engineering, the University of Tokyo
    • Apr. 2017 - Mar. 2018, Kotani Lab, Research Center for Advanced Sceience and Technology
    • Apr. 2016 - Mar. 2018, Dept. of Precison Engineering
    • Apr. 2014 - Mar. 2016, Faculty of Liberal Arts

Interest

  • Robotics, Computer Vision, Control theory
  • High-speed Robotics
    • System integration of high-speed robot using 1000fps high-speed image processing
    • Deformation Control, robot force control for dynamic manipulation with high speediness
    • Application of high-speed visual control for logistics, Unmanned Aerial Vehicle(UAV)
  • Robot vision
    • 3D perception for robotics with sensor fusion
  • Other hobby

Publication

International Conference (First author)

  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, Makoto Shimojo, and Masatoshi Ishikawa: High-speed Hitting Grasping with Magripper, a Highly Backdrivable Gripper using Magnetic Gear and Plastic Deformation Control, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2020), Proceedings, pp. 9137 - 9143. [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]
  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, and Masatoshi Ishikawa: Adaptive Visual Shock Absorber with Visual-based Maxwell Model Using Magnetic Gear, The 2020 International Conference on Robotics and Automation (ICRA2020), Proceedings, pp. 6163-6168.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: Non-Stop Handover of Parcel to Airborne UAV Based on High-Speed Visual Object Tracking, 2019 19th International Conference on Advanced Robotics (ICAR2019), Proceedings, pp. 414-419.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: High-speed UAV Delivery System with Non-Stop Parcel Handover Using High-speed Visual Control, 2019 IEEE Intelligent Transportation Systems Conference (ITSC19), Proceedings, pp. 4449-4455.

International Conference (Not first author)

  • Taisei Fujimoto, Satoshi Tanaka, and Shinpei Kato: LaneFusion: 3D Object Detection with Rasterized Lane Map, the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022), Proceedings, pp. 396-403.

Other publication

  • Kazunari Kawabata, Manato Hirabayashi, David Wong, Satoshi Tanaka, Akihito Ohsato AD perception and applications using automotive HDR cameras, the 4th Autoware workshop at the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022)

Award, Scholarship

Projects

mmCarrot



DepthAnything-ROS



(Research) LaneFusion: 3d detection with HD map

  • Accepted at IV2022

(Research) High-speed Hitting Grasping with Magripper

  • Accepted at IROS2020 [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]

(Research) Adaptive Visual Shock Absorber with Magslider

  • Accepted at ICRA2020

(Research) High-speed supply station for UAV delivery system

  • Accepted at ITSC2019


Robotic Competition

  • Team Leader for ABU Robocon2016
  • Winner of National Championships, 2nd-runnerup of ABU Robocon, ABU Robocon award.
  • Visited to the prime minister’s residence as the team leader of representation from Japan team. Reported by link and link.

Other projects

Latest change (blog, survey)

BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers (ECCV2022)
BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers (ECCV2022) Summary https://github.com/fundamentalvision/BEVFormer Attention base でのMulti-cameraからBird’s-Eye-View Representation を得る
BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation (arxiv2022/05)
BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation (arxiv2022/05) Summary https://bevfusion.mit.edu/ 公式 https://github.com/mit-han-lab/bevfusion mmdet base、waymo, nuscenes で評価 pretrained modelがある https://www.youtube.com/watch?v=uCAka90si9E BEV特徴量空間でfusionするCam
Blog の update
Blog の update Blogの見た目を再び変えました なんかgithub-styleがしっくり着てなかったので変更 要件としては ダークモードがある ごちゃごちゃ
MTBF Model for AVs - From Perception Errors to Vehicle-Level Failures (IV2022)
MTBF Model for AVs - From Perception Errors to Vehicle-Level Failures (IV2022) Summary from Intel + Mobileye RSS modelはPerception errorを考慮していなかったため、perception system error と vehicle-level failures (= collision) を
LaneFusion: 3D detection with HD map
Summary concept Researched at TIER IV, Inc. In this study, LaneFusion, a 3D object detection framework employing LiDAR and HD map fusion using a vector map, are developed to overcome the problem that existing detection model often infer objects heading in opposite. Method Through a offline rasterization and a online rasterization, LaneFusion overcomes the problem that the vector map format is difficult to input into current mainstream convolutional neural networks (CNNs).
LaneFusion: 地図を用いた3d detection
Summary concept Researched at TIER IV, Inc. concept 本研究では、Objectの反対方向への推測を抑えることを目的とした、LiDARとベクターマップを使用した3D detectio
VSCodeのterminal tabの設定をする
VSCodeのterminal tabの設定をする 概要 VSCode v1.58 (2021/06) で対応された “Terminals in the editor area” が便利そうだったのでそれに合わせてVSCodeの設定を見直し
RustでRosbag2から画像を抽出するcrate
RustでRosbag2から画像を抽出するcrate 概要 rosbag2のSQLite DBから直接画像を読み込むcrate を作った rosを立ち
Blogのupdate
Blogのupdate Blogの見た目を変えました HugoのthemeをBegからgithub-styleに変更しました 理由としては Begが
Center-based 3D Object Detection and Tracking (araxiv 2020/06, CVPR2021)
summary LiDAR-based 3d object detection + tracking Anchor-free 2020年あたりからのデファクトスタンダード https://github.com/tianweiy/CenterPoint github Centerの点を考える手法 anchor-freeで考えられて、tracki