For Japanese

Biography

Profile

  • Name: Satoshi Tanaka

Work Experience

  • Apr. 2020 - Now, TIER IV, Inc. Autonomous Driving Sensing/Perception Engineer
  • Internship
    • Apr. 2018 - Apr. 2019, Internship at Preferred Networks, Inc. as a part-time engineer
    • Aug. 2017 - Mar. 2018, Internship at Hitachi, Ltd as a research assistant

Academic Background

  • Master’s Degree in Information Science and Engineering, the University of Tokyo
    • Apr. 2018 - Mar. 2020, Ishikawa Senoo Lab, Department of Creative Informatics, Graduate School of Information Science and Technology
  • Bachelor’s Degree in Precision Engineering, the University of Tokyo
    • Apr. 2017 - Mar. 2018, Kotani Lab, Research Center for Advanced Sceience and Technology
    • Apr. 2016 - Mar. 2018, Dept. of Precison Engineering
    • Apr. 2014 - Mar. 2016, Faculty of Liberal Arts

Interest

  • Robotics, Computer Vision, Control theory
  • High-speed Robotics
    • System integration of high-speed robot using 1000fps high-speed image processing
    • Deformation Control, robot force control for dynamic manipulation with high speediness
    • Application of high-speed visual control for logistics, Unmanned Aerial Vehicle(UAV)
  • Robot vision
    • 3D perception for robotics with sensor fusion
  • Other hobby

Publication

International Conference (First author)

  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, Makoto Shimojo, and Masatoshi Ishikawa: High-speed Hitting Grasping with Magripper, a Highly Backdrivable Gripper using Magnetic Gear and Plastic Deformation Control, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2020), Proceedings, pp. 9137 - 9143. [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]
  • Satoshi Tanaka, Keisuke Koyama, Taku Senoo, and Masatoshi Ishikawa: Adaptive Visual Shock Absorber with Visual-based Maxwell Model Using Magnetic Gear, The 2020 International Conference on Robotics and Automation (ICRA2020), Proceedings, pp. 6163-6168.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: Non-Stop Handover of Parcel to Airborne UAV Based on High-Speed Visual Object Tracking, 2019 19th International Conference on Advanced Robotics (ICAR2019), Proceedings, pp. 414-419.
  • Satoshi Tanaka, Taku Senoo, and Masatoshi Ishikawa: High-speed UAV Delivery System with Non-Stop Parcel Handover Using High-speed Visual Control, 2019 IEEE Intelligent Transportation Systems Conference (ITSC19), Proceedings, pp. 4449-4455.

International Conference (Not first author)

  • Taisei Fujimoto, Satoshi Tanaka, and Shinpei Kato: LaneFusion: 3D Object Detection with Rasterized Lane Map, the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022), Proceedings, pp. 396-403.

Other publication

  • Kazunari Kawabata, Manato Hirabayashi, David Wong, Satoshi Tanaka, Akihito Ohsato AD perception and applications using automotive HDR cameras, the 4th Autoware workshop at the 2022 33rd IEEE Intelligent Vehicles Symposium (IV 2022)

Award, Scholarship

Projects

mmCarrot



DepthAnything-ROS



(Research) LaneFusion: 3d detection with HD map

  • Accepted at IV2022

(Research) High-speed Hitting Grasping with Magripper

  • Accepted at IROS2020 [2020 IEEE Robotics and Automation Society Japan Joint Chapter Young Award]

(Research) Adaptive Visual Shock Absorber with Magslider

  • Accepted at ICRA2020

(Research) High-speed supply station for UAV delivery system

  • Accepted at ITSC2019


Robotic Competition

  • Team Leader for ABU Robocon2016
  • Winner of National Championships, 2nd-runnerup of ABU Robocon, ABU Robocon award.
  • Visited to the prime minister’s residence as the team leader of representation from Japan team. Reported by link and link.

Other projects

Latest change (blog, survey)

The Importance of Prior Knowledge in Precise Multimodal Prediction (IROS2020)
summary UberによるPrediction framework REINFORCE の提案 Mapや交通ルールから好ましい予測のoutputを出したいが、基本的に微分不可能 REINFORCE gradient estim
Uncertainty-aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving (arxiv2018, WACV2020)
Summary from Uber 1 agentごとの静的地図+他の車両など動的状況をラスタライズ化した画像をinputとした1 agent, single-modal prediction Background Method Input Rasterized input RGBの3chのデータ 道路
画像・動画・カメラ入力を扱うインターフェイスのライブラリをRustで作って公開した
画像・動画・カメラ入力を扱うインターフェイスのライブラリをRustで作って公開した 概要 動画像処理において、カメラinput・mp4動画・1枚
使ってて良かった家電・ガジェット類の紹介
使ってて良かった家電・ガジェット類の紹介 概要 使ってて良かった家電・ガジェット類の紹介 同僚に「買ってよかったランキングを聞かせてくれ」と聞かれ
Rustでの画像保存の高速化
Rustでの画像保存の高速化 概要 image crateのpngのsaveがなんか時間かかるのをppmで高速に保存する https://github.com/scepter914/camera-image-processing-template 実装とかはここに置いた 実装 ちまち
Rustでカメラから取得した画像に対して画像処理をする
Rustでカメラから取得した画像に対して画像処理をする 概要 最近勉強がてらRustを触り初めて、Rust * 画像処理はまだまだ日本語資料が少ない
rosbagのtopicを大量にremapするshell script
rosbagのtopicを大量にremapするshell script 概要 rosbagのtopicを大量にremapするshell scriptを作った 脳
個人的なwiki運用の一案
概要 最近良く「markdownで色々情報を残すのが便利なのはわかったんだけど、Toolを何使うと便利なの?」と聞かれるので、blogにしてお
磁石歯車グリッパ”Magripper”による高速グラスピング
Summary http://ishikawa-vision.org/fusion/Magripper/index-j.html における成果 concept 本研究では、バックドライバビリティが高いグリッパ"Magripper"と、リーチングからシームレスに高
High-speed Hitting Grasping with Magripper
Summary Research at http://ishikawa-vision.org/fusion/Magripper/index-e.html concept In this study, Magripper, a highly backdrivable gripper, and hitting grasping, high-speed grasping framework, are developed to achieve high-speed hitting grasping executed seamlessly from reaching. The gripper is designed to achieve both high speediness and environmental adaptability. To realize high-speed hitting grasping with Magripper, the framework using three elements were developed. Designed Magripper, a highly backdrivable gripper Implemented deformation control based the Zener model in Magripper Proposed the concept of hitting grasping using Magripper Magripper We introduce a magnetic gear and developed Magripper, a highly backdrivable 1-actuator gripper, to achieve both high speed and environmental adaptability.